Considerations on Recommendation Independence for a Find-Good-Items Task

نویسندگان

  • Toshihiro Kamishima
  • Shotaro Akaho
چکیده

This paper examines the notion of recommendation independence, which is a constraint that a recommendation result is independent from specific information. This constraint is useful in ensuring adherence to laws and regulations, fair treatment of content providers, and exclusion of unwanted information. For example, to make a job-matching recommendation socially fair, the matching should be independent of socially sensitive information, such as gender or race. We previously developed several recommenders satisfying recommendation independence, but these were all designed for a predicting-ratings task, whose goal is to predict a score that a user would rate. We here focus on another find-good-items task, which aims to find some items that a user would prefer. In this task, scores representing the degree of preference to items are first predicted, and some items having the largest scores are displayed in the form of a ranked list. We developed a preliminary algorithm for this task through a naive approach, enhancing independence between a preference score and sensitive information. We empirically show that although this algorithm can enhance independence of a preference score, it is not fit for the purpose of enhancing independence in terms of a ranked list. This result indicates the need for inventing a notion of independence that is suitable for use with a ranked list and that is applicable for completing a find-good-items task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Value of Random Opinions in Decentralized Recommendation

As the amount of information available to users continues to grow, filtering wanted items from unwanted ones becomes a dominant task. To this end, various collaborative-filtering techniques have been developed in which the ratings of items by other users form the basis for recommending items that could be of interest for a specific person. These techniques are based on the assumption that havin...

متن کامل

Typicality Based - Collaborative Filtering Recommendation

Collaborative filtering is a good mechanism used in recommender system, which is used to find the similar items in a group. The similar favour items can be identified by using the collaborative filtering based on items and the users. However there are some drawbacks in previous filtering techniques which leads to less accuracy, data sparsity and prediction errors. In the huge collection of data...

متن کامل

Typicality Based - Collaborative Filtering Recommendation Usingclustering

Collaborative filtering is a good mechanism used in recommender system, which is used to find the similar items in a group. The similar favour items can be identified by using the collaborative filtering based on items and the users. However there are some drawbacks in previous filtering techniques which leads to less accuracy, data sparsity and prediction errors. In the huge collection of data...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Correcting Popularity Bias by Enhancing Recommendation Neutrality

In this paper, we attempt to correct a popularity bias, which is the tendency for popular items to be recommended more frequently, by enhancing recommendation neutrality. Recommendation neutrality involves excluding specified information from the prediction process of recommendation. This neutrality was formalized as the statistical independence between a recommendation result and the specified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017